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STABILITY OF WAVY DOWNFLOW OF FILMS CALCULATED

BY THE NAVIER–STOKES EQUATIONS

UDC 532.51Yu. Ya. Trifonov

The process of downflow of viscous films on a smooth surface is analyzed theoretically with the use of
the full Navier–Stokes equations. The limits of applicability of the asymptotic and integral approaches
to the description of waves on falling films are determined. Various nonlinear wavy downflow regimes
are calculated in a wide range of the Reynolds and Kapitsa numbers, and stability of these regimes
is studied. For low values of the Kapitsa number, the results of the asymptotic approach are demon-
strated to be inapplicable almost for all Reynolds numbers. For high values of the Kapitsa number, the
solution obtained by the asymptotic method starts to differ significantly from the result obtained by
solving the Navier–Stokes equations beginning from moderate Reynolds numbers. For high Reynolds
numbers, the wavelength of neutral disturbances is independent of the flow rate of the liquid, and
the phase velocity of neutral disturbances is close to the velocity of the free surface. Calculations
of nonlinear wavy regimes with moderate Reynolds numbers predict the existence of internal vortex
zones. It is shown that there are only a few families of steady traveling solutions (a countable set of
different families of such solutions was obtained in calculations by the integral model ).

Key words: viscous film flow, waves, stability.

1. INTRODUCTION AND FORMULATION OF THE PROBLEM

The study of film flows was started by Nusselt [1] who obtained an exact solution of the Navier–Stokes
equations for a free downflow of a thin layer of a viscous liquid on a smooth wall and by Kapitsa [2] who performed
experiments to consider the main wavy regimes of film flows and proposed an integral approach to theoretical
investigations of this phenomenon. The linear stability of a waveless film downflow to free surface perturbations was
considered in [3, 4]. It was shown that a vertical film flow contains unstable disturbances for all Reynolds numbers.
Subsequent extensive theoretical research involved an analysis of nonlinear waves of falling films. Investigations
were performed either with the use of a nonlinear evolution equation for the film thickness (see, e.g., [5–11]) derived
from the asymptotic expansion of the original Navier–Stokes equations or within the framework of the integral
approach (see, e.g., [9–14]). It was found that there exists a countable set of different one-parameter families of
steady traveling solutions branching off from each other (for each particular family, the parameter is the wavelength
or the wavenumber of the nonlinear solution). An analysis of linear stability of different solutions allowed us to
identify two families of waves. It is only for these families that there exists an interval of wavelengths where nonlinear
solutions are stable. There are only a few theoretical papers where the wavy film flow is considered with the use of
the Navier–Stokes equations. Chin et al. [15] solved the Orr–Sommerfeld equations numerically and obtained data
on the linear stability of waveless downflow for high Reynolds numbers (Re > 100). Salamon et al. [16] and Bach
and Villadsen [17] performed Navier–Stokes calculations to obtain the evolution of various initial perturbations on
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the surface of falling films. The studies were performed for moderate Reynolds numbers. The main objective of
the present work was the study of various wavy regimes of film downflow with the use of the full Navier–Stokes
equations.

2. GOVERNING EQUATIONS

2.1. System of Nonlinear Equations. Film downflow on an inclined plane is described by a system of
the Navier–Stokes equations in rectangular coordinates with appropriate boundary conditions:
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Here H(x, t) is the local film thickness, u and v are the components of the velocity vector in the x and y directions,
respectively, P is the pressure in the liquid, Pa is the atmospheric pressure, t is the time, and θ is the slope of the
x axis counted from the vertical direction. The equations are written in dimensionless form. The dimensionless
quantities are related to the appropriate dimensional quantities (indicated by the asterisk):
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Here ν is the kinematic viscosity, ρ is the density of the liquid, σ is the surface tension, L is the wave period, Re is
the Reynolds number, and Fi is the film number.

Using the transformation of coordinates t1 = t, x1 = x − ct, η = y/H(x − ct, t) (c is the phase velocity; the
flow domain in the new variables is known: η ∈ [0, 1]), we obtain the global coordinate system in the following form
(the subscript 1 at the new variables of time and coordinate is omitted):

∂u

∂t
− c

∂u

∂x
+ ηt

∂u

∂η
= −∂P

∂x
− ηx

∂P

∂η

+
1

ε Re

[
3 + η2

y

∂2u

∂η2
+ ε2

(∂2u

∂x2
+ η2

x

∂2u

∂η2
+ 2ηx

∂2u

∂x∂η
+ (ηxξ + ηxηxη)

∂u

∂η

)]
− ηy

∂uv

∂η
− ∂u2

∂x
− ηx

∂u2

∂η
; (2.1)

ηy
∂P

∂η
= −3 tan θ

Re
+

ε

Re

[
η2

y

∂2v

∂η2
+ ε2

(∂2v

∂x2
+ η2

x

∂2v

∂η2
+ 2ηx

∂2v

∂x ∂η
+ (ηxξ + ηxηxη)

∂v

∂η

)]

− ε2
(∂v

∂t
− c

∂v

∂x
+ ηt

∂v

∂η
+

∂uv

∂x
+ ηx

∂uv

∂η
+ ηy

∂v2

∂η

)
; (2.2)

240



v(t, x, η) = −H(t, x)u(t, x, η)ηx − ∂

∂x

(
H

η∫

0

u(t, x, η′) dη′
)
; (2.3)

∂H

∂t
+

∂

∂x

(
H(t, x)

1∫

0

(u(t, x, η′) − c) dη′
)

= 0; (2.4)

u(t, x, η) = 0, η = 0; (2.5)

P − Pa =
2ε

Re
ηy

∂v

∂η

1 + ε2(∂H/∂x)2

1 − ε2(∂H/∂x)2
− ε2 We

∂2H/∂x2

[1 + ε2(∂H/∂x)2]3/2
, η = 1; (2.6)

(∂u

∂η
+ ε2H

∂v

∂x
− ε2 ∂H

∂x

∂v

∂η

)[
1 − ε2

(∂H

∂x

)2]
+ 4ε2 ∂v

∂η

∂H

∂x
= 0, η = 1. (2.7)

Here We = (3 Fi)1/3/ Re5/3 is the Weber number, ηx = −(η ∂H/∂x)/H , ηy = 1/H , ηt = −η(∂H/∂t− c ∂H/∂x)/H ,
ηxη = −(∂H/∂x)/H , and ηxξ = −(ηx/H) ∂H/∂x − (η∂2H/∂x2)/H . Below we find the steady-state solutions of
system (2.1)–(2.7) [Hb(x), ub(x, η), vb(x, η), and Pb(x, η)] and study their linear stability. One of the solutions (the
trivial one) can be easily written:

H0
b (x) = 1, u0

b(x, η) = 1.5(2η − η2),

v0
b (x, η) = 0, P 0

b (x, η) = Pa + 3 tan θ(1 − η)/ Re .
(2.8)

Other steady-state solutions can be constructed only numerically. It follows from Eqs. (2.1)–(2.7) that the flow is
determined by three independent quantities: θ, Fi, and Re. The spatial wave period L is an internal parameter. In
constructing the steady-state solutions numerically, we used the spectral method [18] developed for analyzing the
film flow on a corrugated surface:

ub(x, η) =
1
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U1(x) +
M∑

m=2

Um(x)Tm−1(η1), η1 = 2η − 1,

Um(x) = U0
m +

N/2−1∑
n=−N/2+1

n�=0

Un
m exp (2πinx), (U−n
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Here Tm(η1) are the Chebyshev polynomials; the asterisk indicates complex conjugation.
It should be noted that, in contrast to the algorithm developed in [18], the harmonics Un

m in the case
considered are supplemented by the harmonics in the expansion of the film thickness Hb(x). For given M(N − 1)
values of the real and imaginary parts of the harmonics Un

m and N − 1 values of the harmonics Hn, the velocity
vb(x, η) is uniquely determined by Eq. (2.3), and the pressure Pb(x, η) is found from Eqs. (2.2) and (2.6). The
numerical algorithm starts from the initial approximation of the harmonics Un

m and Hn [for example, from the
trivial solution of Eq. (2.8) in the neighborhood of the neutral curve], which is then refined by the Newton method
with the use of Eq. (2.1) in the space (n, m) and Eq. (2.4):

Hb(x) = (1 − c〈Hb(x)〉)
/ 1∫

0

(ub(x, η′) − c) dη′.

Here 〈 · 〉 is the mean over the wavelength. The phase velocity c is determined from the condition of symmetry with
respect to the shift of the origin of the x coordinate. In the expansion of the film thickness, we can assume that
the phase of one harmonic is known and consider the velocity c as an unknown instead of this phase. The Jacobi
matrix is calculated by a finite-difference scheme. The basis functions do not satisfy the boundary conditions
(2.5) and (2.7) automatically. As a consequence, we obtain (M + 3)(N − 1) nonlinear algebraic equations for
determining (M + 1)(N − 1) unknowns, i.e., the system is overdetermined. In the present work, we reject 2(N − 1)
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equations corresponding to two last (small) Chebyshev polynomials in the expansion of Eq. (2.1); instead of them,
we use the boundary conditions (2.5) and (2.7). In tuning the calculation procedure, we checked other possible
methods of reducing the number of equations. The result almost coincide in all cases if the function u(x, η) is
approximated with sufficient accuracy. The values of N and M were varied in calculations to satisfy the conditions
|UN/2−1

m |/ sup |Un
m| < 10−3 for all m and |Un

M |/ sup |Un
m| < 10−3 for all n. Small differences in the solutions for

different N and M (in the case of satisfactory approximation of the velocity field) additionally confirms that the
calculation procedure is correct.

2.2. Stability of Steady-State Solutions. Substituting the expressions
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(complex-conjugate quantities with respect to the disturbance are denoted by c.c.); the quantities marked by the bar
are obtained with the substitution of the steady-state solution) into Eqs. (2.1)–(2.7) and linearizing these equations,
we obtain a system of equations in eigenvalues with periodic (or constant if stability of the trivial solution is studied)
coefficients along the x coordinate:
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The coefficients ai
j and bi

j in Eqs. (2.9)–(2.14) are real functions and are expressed via the solution of the steady-state
problem as
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It follows from the Floquet theorem that the solutions of system (2.9)–(2.14) bounded in terms of the x
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Here the real parameter is Q ∈ [0, 1]. After substitution of these expressions into Eqs. (2.9)–(2.14), the problem
reduces to a generalized problem in eigenvalues for complex matrices of the general form:

Ax̂ = γBx̂, x̂ =

⎛
⎜⎜⎝

Ĥn

ûmn

v̂mn

P̂mn

⎞
⎟⎟⎠ . (2.15)

The matrices A and B, which have the dimension [(3M +1)(N −1), (3M +1)(N −1)], were constructed numerically.
A succession of different unit vectors of disturbances was set, and the columns of the matrices A and B were
calculated. As in calculating the nonlinear steady-state solutions, we rejected 2(N − 1) equations corresponding to
two last (small) Chebyshev polynomials in the expansion of Eq. (2.10) and used the boundary conditions (2.11),
(2.12) instead of them.

To evaluate the stability of the solution [Hb(x), ub(x, η), vb(x, η), and Pb(x, η)], we have to analyze (3M +
1)(N − 1) eigenvalues for each value of the parameter Q. The solution is stable is the real parts of all eigenvalues
are greater than or equal to zero. Disturbances with the zero value of the parameter Q should be noted specially.
Such disturbances have the same period as the initial solution. Instability to this class of disturbances means that
such a regime cannot be realized in the experiment. Solutions unstable to disturbances with Q �= 0 can be observed
in experiments in certain segments of the flow, where the disturbances did not yet have enough time to develop or
were artificially suppressed.
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Fig. 1. Wavenumbers of neutral disturbances for a film flowing down a vertical wall, obtained by
Navier–Stokes calculations for Fi1/11 = 10 (1), 5 (2), and 2 (3).

3. CALCULATION RESULTS

3.1. Stability of the Waveless Film Flowing Down a Smooth Wall. Benjamin [3] solved the Orr–
Sommerfeld equation for a film flowing down an inclined plane with the use of expansion with respect to the small
parameter. For Re > (Recr)B , all disturbances with wavelengths λ∗ > (λ∗

neut)B (the quantities indicated by the
asterisk are dimensional) are unstable and increase with time (disturbances with λ∗ < (λ∗

neut)B decay with time).
The following relations were obtained [3] for the critical Reynolds number (Recr)B above which wave formation
begins and for the wavelength of the neutral disturbance (λ∗

neut )B :

(Recr)B =
5
6

tan θ,
2πH0

(λ∗
neut)B

√
5 We
18

=

√
1 − 5 tan θ

6 Re
.

Figure 1 shows the results of calculating stability (αneut ≡ 2πH0/λ∗
neut) of a waveless film flow by the

linearized Navier–Stokes equations (2.9)–(2.14) in the case of a vertical wall (θ = 0). The calculations were performed
for three values of the film number Fi. The value Fi1/11 = 10 is close to the corresponding number for water or a
cryogenic liquid (nitrogen at the saturation line at atmospheric pressure); the values Fi1/11 = 5 and 2 correspond to
the aqueous solution of alcohol and glycerin (see, e.g., [10]). The results plotted in Fig. 1 can be readily compared
with the calculations by the asymptotic theory [3] [(αneut)B

√
5 We /18 = 1 for all values of Re and Fi]. Stability

calculations were also performed for slopes of the flow plane θ = 45 and 80◦. The critical Reynolds numbers Recr

corresponding to the beginning of wave formation coincide with those calculated by the asymptotic theory [3]. For
Re < Recr, all disturbances decay, and the real parts of all eigenvalues of problem (2.15) are greater than zero (in
the entire range of the values of the parameter Q). For Re > Recr (at least, up to Re = 1000) and for Q < Qneut,
the spectrum of eigenvalues always has the only unstable mode whose wavelength is L/Q. For Q > Qneut, the real
parts of all eigenvalues of problem (2.15) are greater than zero, and the disturbances decay with time.

Note, the number of the Chebyshev polynomials M in disturbance approximations performed was varied
within a wide range (from 10 to 50). The dependences of the neutral disturbance wavelength on the Reynolds
number plotted in Fig. 1 were obtained for M = 25 (in the entire range of variation of Re) and remain unchanged
with a further increase in M . For high Reynolds numbers, the dependences in Fig. 1 have an asymptotic curve for
each value of Fi (which is a straight line in logarithmic coordinates).

The results obtained allows us to draw the following conclusions.
In the neighborhood of the critical number of wave formation, the results on stability of the waveless flow

calculated by the linearized Navier–Stokes equations agree with the results obtained by the asymptotic theory [3].
The region where these results are consistent becomes substantially smaller with decreasing film number. In the
case of a film flowing down a vertical wall, the wavelength of the neutral disturbance in this region decreases with
increasing Reynolds number: λ∗

neut ∼ √
σ/(ρg Re), and shorter and shorter disturbances become unstable. The

phase velocity of the neutral disturbance in this region is close to the doubled velocity on the film surface.
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Fig. 2. Basic wave characteristics of nonlinear solutions of the first family and regions of stability of
these solutions, obtained by the Navier–Stokes calculations for Ka = 10 and Re = 100: the curves
show the solutions stable (1–4) and unstable (1′–4′) with respect to disturbances with the period λ
equal to the period of the nonlinear solution; curves 1–3 and 1′–3′ show the maximum film thickness
Hmax (1 and 1′), the mean film thickness 〈H〉 (2 and 2′), and the minimum film thickness Hmin (3
and 3′); curves 4 and 4′ show the phase velocity c.

For high Reynolds numbers, the dependences obtained imply that the wavelength of the neutral disturbance
is determined only by the physical properties of the liquid and by the slope of the plane of the film flow [λ∗

neut =
C
√

σ/(ρg), where C = C(θ, Fi1/11)] and does not depend on the flow rate of the liquid. The phase velocity of the
neutral disturbances is close to the velocity of the free surface.

3.2. Nonlinear Wavy Regimes Branching Off from the Trivial Solution and Their Stability
for a Film Flowing Down a Smooth Vertical Surface. Steady traveling wavy solutions of system (2.1)–(2.7)
(called the first family of waves in what follows) branch off from the line of the loss of stability of the trivial solution.
In considering these solutions, we confine ourselves to the case of a vertical wall. The problem has two external
parameters: the Kapitsa number Ka = Fi1/11 and Re / Ka. The wavelength (or the wavenumber) is one of the
internal characteristics of the solution for a family of nonlinear waves. In what follows, the wavelength is usually
normalized to the wavelength of the neutral disturbance for the corresponding values of Ka and Re.

Figure 2 shows the results calculated for nonlinear waves and their stability for Ka = 10 and Re / Ka = 10.
Similar calculations were performed for Re / Ka = 1.0 and 0.1. In all cases, branching occurs in the “soft” regime,
and the solutions continue to the region of linear instability of the trivial solution up to the small values of the
wavenumber α/αneut = 0.2. The mean film thickness is close to unity in the entire range of parameters, and the
wave amplitude is extremely small for Re / Ka = 0.1. For Ka = 10, the long waves of the first family are unstable
to disturbances with a period equal to the period of the nonlinear solution [disturbances with Q = 0 in problem
(2.9)–(2.14)]. When the stability of the solution to disturbances with Q = 0 is studied, the spectrum of eigenvalues
consists of one zero value (consequence of translational symmetry), several real eigenvalues, and a large number
of pairs of complex-conjugate roots. As the wavenumber changes, the spectrum of eigenvalues also changes; new
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Fig. 3. Profile of the film thickness for the solutions of the first family and isolines of the stream
function in a coordinate system moving with the phase velocity of the wave for Ka = 10 and
Re = 100: λneut/λ = 0.8 (a), 0.5 (b), and 0.2 (c).

complex-conjugate pairs of roots may appear, or a complex-conjugate pair may transform to two real roots. In
the case of the loss of stability of the waves of the first family (see Fig. 2), the dependence of the real part of the
complex-conjugate pair of eigenvalues on λneut/λ passes through the zero point. Figure 3 shows the typical profiles
of the solutions of this family for Re = 100 and Ka = 10 and also the isolines of the stream function Ψ(x, η) in a
coordinate system moving with the phase velocity of the wave:

Ψ(x, η) =

η∫

0

(u − c)H dη′.

The presence of a vortex in the structure of the stream function for this value of the Reynolds number should be
noted.

Figure 4 shows the calculated results for nonlinear waves and their stability for Ka = 2 and Re / Ka = 1.
Similar calculations were performed for Re / Ka = 10.0 and 0.1. In this case, branching also occurs in the “soft”
regime, and the solutions continue to the region of linear instability of the trivial solution. Figure 5 shows the typical
wave profiles for Re = 20 and Ka = 2 and also the isolines of the stream function Ψ(x, η) in a coordinate system
moving with the phase velocity of the wave. A large number of Fourier harmonics has to be used in calculating
long waves for Ka = 2. Stability of solutions with respect to disturbances with Q = 0 was studied only up to
comparatively small ratios λneut/λ ≈ 0.4. For Ka = 2, no unstable solutions were found (except for the case with
Re = 0.2). It should be noted that there is a qualitative difference in the profiles of the long waves of the first family
for Ka = 10 and Ka = 2: these are successions of solitary dips in the first case and solitary humps with a steep
leading front in the second case. For Re / Ka = 10 and Ka = 2, in addition, there appears a vortex inside the wave
hump with decreasing wavenumber (see Fig. 5), and a further decrease in the wavenumber requires an extremely
large number of the Fourier harmonics. Calculation of long solitary dips with a vortex for Ka = 10 involves no
significant difficulties.

247



1

2

3

4

2 0

10

3 0

40

lneut/l
0.7

0.2 0.6 1.00.4 0.8

0.8

0.9

1.0

0.95

0.90

1.00
1.0

1.1

1.2

1.3

1.4

2.0

2.6

2.4

2.8

3.0

3.2

3.4

3.6

3.8

c

Hmin

Hmax

hHi

Fig. 4. Basic wave characteristics of nonlinear solutions of the first family and regions of stability
of these solutions, obtained by the Navier–Stokes calculations for Ka = 2 and Re = 2: curves 1–4
show the solutions stable with respect to disturbances with the period λ equal to the period of the
nonlinear solution; curves 1′–4′ show the regions where the solution was not studied; curves 1–3
and 1′–3′ show the maximum film thickness Hmax (1 and 1′), the mean film thickness 〈H〉 (2 and
2′), and the minimum film thickness Hmin (3 and 3′); curves 4 and 4′ show the phase velocity c.

Figure 6 shows the wave characteristics calculated for an increased parameter Re / Ka. The calculations
were started from the solutions of the first family obtained for Re / Ka = 0.1. The experiments [2] made it possible
to formulate the criterion of the beginning of wave formation on the surface of falling films Re / Ka > 0.61. It
follows from the data in Fig. 6 that the maximum rate of variation of the main wave characteristics is reached in
the vicinity of the value Re / Ka = 0.61. For high values of Re / Ka, the maximum and minimum dimensionless
thicknesses of the film tend to a constant value.

Thus, for one set of parameters (e.g., λneut/λ = 0.4, Re / Ka = 1, and Ka = 10), the solutions can be obtained
by different methods: 1) by changing the wavenumber with Re / Ka = const; 2) by changing the parameter Re / Ka
with a fixed value of λneut/λ. A question of solution uniqueness arises. This issue was considered in [6, 9] with
the use of a simple evolution equation (valid for low Reynolds numbers) and in [13, 14] within the framework of
the integral model. In both cases, there exist special lines λ(Q) where the solution of the first family with the
wavelength λ loses its stability with respect to disturbances with this value of Q. Among these special lines, there
are lines where the real eigenvalue changes its sign for all values Q ∈ [0; 0.5]. New families of steady traveling
periodic solutions branch off along these lines for rational values of Q. Thus, these models have a countable set of
different families of steady traveling solutions. Such degeneration is not observed in considering nonlinear waves
with the use of the Navier–Stokes equations. For finite values of Q �= 1/2, no lines were found with simultaneous
vanishing of the real and imaginary parts of some eigenvalue. For Q = 1/2, the spectrum of eigenvalues of problem
(2.9)–(2.14) consists of real and complex-conjugate pairs of numbers. In this case, when the real eigenvalue passes
through the zero point, a new family of steady traveling solutions branches off (and the period is doubled) (Fig. 7).
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Fig. 8. Profile of the film thickness and isolines of the stream function for Ka = 10: (a) λneut/λ =
0.22 and Re = 10; (b) λneut/λ = 0.2 and Re = 20 (b); (c) λneut/λ = 0.26 and Re = 24.1.

Figure 8a shows the profile of the solution for the second family of nonlinear waves branched off from curve 1
in Fig. 7 for Re / Ka = 1. In contrast to the long wave of the first family, (solitary dip in Fig. 3), here we have
a solitary hump; in addition, there are “ripples” on the leading front. For wavenumbers greater than the value
corresponding to Re / Ka = 2 on curve 1 (see Fig. 7), there arise waves of another type (see Fig. 8b), which
cannot be obtained by continuation of solitary humps or solitary dips with the parameter Re / Ka being varied (see
Fig. 8c). Thus, for Ka = 10, the Navier–Stokes equations predict the existence of different types of long waves
and, correspondingly, different families of solutions. These families in the plane of parameters (Re / Ka, λneut/λ)
are interrelated in a complicated manner. For instance, for Re / Ka = 1, solitary humps can be obtained either by
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moving with the phase velocity of the wave for Ka = 2, λneut/λ = 0.32, and Re = 4.6 [the solution
is continued from the wave of the first family with increasing Re (beginning from Re = 0.2) and
λneut/λ = const].

branching from curve 1 in Fig. 7 and continuation by the parameter λneut/λ, or by branching from the waves of the
first family calculated with increasing Re / Ka (beginning from Re / Ka = 0.1) and for λneut/λ = const.

The situation for Ka = 2 is simpler. Different types of long waves were not found in calculations. New
solutions branched off with doubling of the period on the upper part of curve 2 in Fig. 7 degenerate into solutions
of the first family on the lower part of curve 2 in Fig. 7. Thus, for Ka = 2, nonuniqueness of families of steady
traveling solutions exists only in a small range of wavenumbers. The absence of oscillations on the leading front of
the long waves of solutions obtained by continuation from the wave of the first family with increasing Re (beginning
from Re = 0.2) and for λneut/λ = const, Ka = 2 should be noted (Fig. 9).

The results obtained allow us to draw the following conclusions. The Navier–Stokes calculations of nonlinear
wavy regimes and their stability have some differences from the calculations by the integral model. Branching of
new families of steady traveling solutions is possible only with doubling of their period. As a consequence, there
are only several families of steady traveling solutions. Calculations by the integral model yield a countable number
of different families of such solutions.

For high Reynolds numbers, the solutions found imply the existence of an internal vortex zone moving with
the phase velocity of the wave.

This work was supported by the Russian Foundation for Basic Research (Grant No. 08-08-00421).
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